Overview
Mini RAG provides a modular, Pythonic API for building RAG (Retrieval-Augmented Generation) applications. This reference documentation covers all classes, methods, and configuration options.Quick Links
AgenticRAG
Main RAG orchestrator class
Configuration
Configuration dataclasses
Vector Store
Milvus vector storage
Rerankers
Reranking strategies
Installation
Basic Usage
Core Concepts
Configuration-Based API
Mini RAG uses a clean, configuration-based API with four main configuration classes:LLMConfig: Language model settingsRetrievalConfig: Retrieval behaviorRerankerConfig: Reranking strategyObservabilityConfig: Monitoring and tracing
Modular Components
Use individual components or the complete pipeline:DocumentLoader: Multi-format document loadingChunker: Smart text chunking with ChonkieEmbeddingModel: OpenAI-compatible embeddingsVectorStore: Milvus vector storageAgenticRAG: Complete RAG orchestrator
